Receptors, N-Methyl-D-Aspartate
"Receptors, N-Methyl-D-Aspartate" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity.
Descriptor ID |
D016194
|
MeSH Number(s) |
D12.776.157.530.400.400.500.500 D12.776.543.550.425.500.200.500 D12.776.543.585.400.500.200.500 D12.776.543.750.720.200.450.400.500
|
Concept/Terms |
Receptors, N-Methyl-D-Aspartate- Receptors, N-Methyl-D-Aspartate
- Receptors, N Methyl D Aspartate
- N-Methylaspartate Receptors
- N Methylaspartate Receptors
- Receptors, NMDA
- NMDA Receptors
- Receptors, N-Methylaspartate
- Receptors, N Methylaspartate
- N-Methyl-D-Aspartate Receptors
- N Methyl D Aspartate Receptors
- NMDA Receptor-Ionophore Complex
- NMDA Receptor Ionophore Complex
|
Below are MeSH descriptors whose meaning is more general than "Receptors, N-Methyl-D-Aspartate".
- Chemicals and Drugs [D]
- Amino Acids, Peptides, and Proteins [D12]
- Proteins [D12.776]
- Carrier Proteins [D12.776.157]
- Membrane Transport Proteins [D12.776.157.530]
- Ion Channels [D12.776.157.530.400]
- Ligand-Gated Ion Channels [D12.776.157.530.400.400]
- Receptors, Ionotropic Glutamate [D12.776.157.530.400.400.500]
- Receptors, N-Methyl-D-Aspartate [D12.776.157.530.400.400.500.500]
- Membrane Proteins [D12.776.543]
- Membrane Glycoproteins [D12.776.543.550]
- Ion Channels [D12.776.543.550.425]
- Ligand-Gated Ion Channels [D12.776.543.550.425.500]
- Receptors, Ionotropic Glutamate [D12.776.543.550.425.500.200]
- Receptors, N-Methyl-D-Aspartate [D12.776.543.550.425.500.200.500]
- Membrane Transport Proteins [D12.776.543.585]
- Ion Channels [D12.776.543.585.400]
- Ligand-Gated Ion Channels [D12.776.543.585.400.500]
- Receptors, Ionotropic Glutamate [D12.776.543.585.400.500.200]
- Receptors, N-Methyl-D-Aspartate [D12.776.543.585.400.500.200.500]
- Receptors, Cell Surface [D12.776.543.750]
- Receptors, Neurotransmitter [D12.776.543.750.720]
- Receptors, Amino Acid [D12.776.543.750.720.200]
- Receptors, Glutamate [D12.776.543.750.720.200.450]
- Receptors, Ionotropic Glutamate [D12.776.543.750.720.200.450.400]
- Receptors, N-Methyl-D-Aspartate [D12.776.543.750.720.200.450.400.500]
Below are MeSH descriptors whose meaning is more specific than "Receptors, N-Methyl-D-Aspartate".
This graph shows the total number of publications written about "Receptors, N-Methyl-D-Aspartate" by people in this website by year, and whether "Receptors, N-Methyl-D-Aspartate" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
1998 | 0 | 1 | 1 | 2000 | 1 | 0 | 1 | 2001 | 1 | 0 | 1 | 2006 | 1 | 0 | 1 | 2007 | 2 | 1 | 3 | 2009 | 1 | 0 | 1 | 2010 | 2 | 0 | 2 | 2011 | 1 | 0 | 1 | 2012 | 1 | 1 | 2 | 2013 | 0 | 2 | 2 | 2016 | 1 | 0 | 1 |
To return to the timeline, click here.
Below are the most recent publications written about "Receptors, N-Methyl-D-Aspartate" by people in Profiles.
-
Roshanravan H, Kim EY, Dryer SE. NMDA Receptors as Potential Therapeutic Targets in Diabetic Nephropathy: Increased Renal NMDA Receptor Subunit Expression in Akita Mice and Reduced Nephropathy Following Sustained Treatment With Memantine or MK-801. Diabetes. 2016 Oct; 65(10):3139-50.
-
Kilpatrick ZP, Ermentrout B, Doiron B. Optimizing working memory with heterogeneity of recurrent cortical excitation. J Neurosci. 2013 Nov 27; 33(48):18999-9011.
-
Moy SS, Riddick NV, Nikolova VD, Teng BL, Agster KL, Nonneman RJ, Young NB, Baker LK, Nadler JJ, Bodfish JW. Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism. Behav Brain Res. 2014 Feb 01; 259:200-14.
-
Kim EY, Anderson M, Dryer SE. Sustained activation of N-methyl-D-aspartate receptors in podoctyes leads to oxidative stress, mobilization of transient receptor potential canonical 6 channels, nuclear factor of activated T cells activation, and apoptotic cell death. Mol Pharmacol. 2012 Oct; 82(4):728-37.
-
Yoon JH, Newton TF, Haile CN, Bordnick PS, Fintzy RE, Culbertson C, Mahoney JJ, Hawkins RY, Labounty KR, Ross EL, Aziziyeh AI, De La Garza R. Effects of D-cycloserine on cue-induced craving and cigarette smoking among concurrent cocaine- and nicotine-dependent volunteers. Addict Behav. 2013 Feb; 38(2):1518-26.
-
Chen T, Zhang D, Dragomir A, Kobayashi K, Akay Y, Akay M. Investigating the influence of PFC transection and nicotine on dynamics of AMPA and NMDA receptors of VTA dopaminergic neurons. J Neuroeng Rehabil. 2011 Oct 21; 8:58.
-
Zhang C, Yi F, Xia M, Boini KM, Zhu Q, Laperle LA, Abais JM, Brimson CA, Li PL. NMDA receptor-mediated activation of NADPH oxidase and glomerulosclerosis in hyperhomocysteinemic rats. Antioxid Redox Signal. 2010 Oct 01; 13(7):975-86.
-
Anderson M, Suh JM, Kim EY, Dryer SE. Functional NMDA receptors with atypical properties are expressed in podocytes. Am J Physiol Cell Physiol. 2011 Jan; 300(1):C22-32.
-
Elhardt M, Martinez L, Tejada-Simon MV. Neurochemical, behavioral and architectural changes after chronic inactivation of NMDA receptors in mice. Neurosci Lett. 2010 Jan 04; 468(2):166-71.
-
Moy SS, Nadler JJ, Poe MD, Nonneman RJ, Young NB, Koller BH, Crawley JN, Duncan GE, Bodfish JW. Development of a mouse test for repetitive, restricted behaviors: relevance to autism. Behav Brain Res. 2008 Mar 17; 188(1):178-94.
|
People  People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|