Phosphatidylinositol 3-Kinases
"Phosphatidylinositol 3-Kinases" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell.
Descriptor ID |
D019869
|
MeSH Number(s) |
D08.811.913.696.620.500
|
Concept/Terms |
Phosphatidylinositol 3-Kinases- Phosphatidylinositol 3-Kinases
- Phosphatidylinositol 3 Kinases
- Phosphoinositide 3-Hydroxykinase
- PI 3-Kinase
- PtdIns 3-Kinases
- 3-Kinases, PtdIns
- PtdIns 3 Kinases
- PI-3K
- PI3 Kinases
- Kinases, PI3
- PI3-Kinase
- PtdIns 3-Kinase
- Phosphatidylinositol-3-OH Kinase
- PI-3 Kinase
|
Below are MeSH descriptors whose meaning is more general than "Phosphatidylinositol 3-Kinases".
Below are MeSH descriptors whose meaning is more specific than "Phosphatidylinositol 3-Kinases".
This graph shows the total number of publications written about "Phosphatidylinositol 3-Kinases" by people in this website by year, and whether "Phosphatidylinositol 3-Kinases" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
1997 | 1 | 0 | 1 | 1998 | 0 | 1 | 1 | 2000 | 2 | 0 | 2 | 2001 | 0 | 1 | 1 | 2002 | 1 | 2 | 3 | 2004 | 0 | 1 | 1 | 2006 | 0 | 1 | 1 | 2007 | 1 | 0 | 1 | 2008 | 0 | 1 | 1 | 2009 | 0 | 1 | 1 | 2010 | 0 | 1 | 1 | 2011 | 0 | 1 | 1 | 2012 | 1 | 0 | 1 | 2013 | 0 | 2 | 2 | 2015 | 1 | 1 | 2 |
To return to the timeline, click here.
Below are the most recent publications written about "Phosphatidylinositol 3-Kinases" by people in Profiles.
-
Thomas AL, Coarfa C, Qian J, Wilkerson JJ, Rajapakshe K, Krett NL, Gunaratne PH, Rosen ST. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma. Nucl Recept Signal. 2015; 13:e006.
-
Shor B, Kahler J, Dougher M, Xu J, Mack M, Rosfjord E, Wang F, Melamud E, Sapra P. Enhanced Antitumor Activity of an Anti-5T4 Antibody-Drug Conjugate in Combination with PI3K/mTOR inhibitors or Taxanes. Clin Cancer Res. 2016 Jan 15; 22(2):383-94.
-
Ishikawa T, Yuhanna IS, Umetani J, Lee WR, Korach KS, Shaul PW, Umetani M. LXRß/estrogen receptor-a signaling in lipid rafts preserves endothelial integrity. J Clin Invest. 2013 Aug; 123(8):3488-97.
-
Hamilton MP, Rajapakshe K, Hartig SM, Reva B, McLellan MD, Kandoth C, Ding L, Zack TI, Gunaratne PH, Wheeler DA, Coarfa C, McGuire SE. Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nat Commun. 2013; 4:2730.
-
Yoshioka K, Yoshida K, Cui H, Wakayama T, Takuwa N, Okamoto Y, Du W, Qi X, Asanuma K, Sugihara K, Aki S, Miyazawa H, Biswas K, Nagakura C, Ueno M, Iseki S, Schwartz RJ, Okamoto H, Sasaki T, Matsui O, Asano M, Adams RH, Takakura N, Takuwa Y. Endothelial PI3K-C2a, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med. 2012 Oct; 18(10):1560-9.
-
Kim EY, Dryer SE. Effects of insulin and high glucose on mobilization of slo1 BKCa channels in podocytes. J Cell Physiol. 2011 Sep; 226(9):2307-15.
-
Yu K, Shi C, Toral-Barza L, Lucas J, Shor B, Kim JE, Zhang WG, Mahoney R, Gaydos C, Tardio L, Kim SK, Conant R, Curran K, Kaplan J, Verheijen J, Ayral-Kaloustian S, Mansour TS, Abraham RT, Zask A, Gibbons JJ. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res. 2010 Jan 15; 70(2):621-31.
-
Shor B, Cavender D, Harris C. A kinase-dead knock-in mutation in mTOR leads to early embryonic lethality and is dispensable for the immune system in heterozygous mice. BMC Immunol. 2009 May 20; 10:28.
-
Wang Y, Srinivasan K, Siddiqui MR, George SP, Tomar A, Khurana S. A novel role for villin in intestinal epithelial cell survival and homeostasis. J Biol Chem. 2008 Apr 04; 283(14):9454-64.
-
Banday AA, Fazili FR, Lokhandwala MF. Insulin causes renal dopamine D1 receptor desensitization via GRK2-mediated receptor phosphorylation involving phosphatidylinositol 3-kinase and protein kinase C. Am J Physiol Renal Physiol. 2007 Sep; 293(3):F877-84.
|
People People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|